If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=6400
We move all terms to the left:
2x^2-(6400)=0
a = 2; b = 0; c = -6400;
Δ = b2-4ac
Δ = 02-4·2·(-6400)
Δ = 51200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{51200}=\sqrt{25600*2}=\sqrt{25600}*\sqrt{2}=160\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-160\sqrt{2}}{2*2}=\frac{0-160\sqrt{2}}{4} =-\frac{160\sqrt{2}}{4} =-40\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+160\sqrt{2}}{2*2}=\frac{0+160\sqrt{2}}{4} =\frac{160\sqrt{2}}{4} =40\sqrt{2} $
| .6x=39 | | 2(3)x=5(2)^x | | 5x^2(x^2-42)=0 | | .6x=33 | | 10-3x=-21x+5 | | 24x+20=0 | | 2=11(-9)+b | | 3x^2-4x-24=0 | | (X^2+4x-1)+(5x-3)=0 | | 13x=-2x+30 | | x+23=2x+28 | | z/6-8=34 | | 5(10-x)=6(13-2x) | | x-33+x+23=180 | | -2(3x-4)=4(x+3)+6 | | 2=11/3+b | | 33=-3(x+5) | | x+56+x+52=180 | | 7x^2-22x+48=0 | | 8=4/7y+4 | | -x-7=-3x+7 | | 7^(x+2)=20 | | 3x+13=2x-5 | | 7^x+2=20 | | 9x+210=4x=140 | | 64(x)÷5×54=691.2 | | .9x=27 | | 19x+96=2(5x+57) | | 5(3-x)=x+3 | | 8x+207=6x=185 | | x+94=2(x+35) | | 8x-50+3x+30+90=180 |